Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Sen Lin, ${ }^{\text {a }}{ }^{*}$ Zhi-Fei Fu, ${ }^{\text {a }}$ Xiao-Niu Fang ${ }^{b}$ and Huan-Yu Liu ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, Nanchang University, 330047 Nanchang, Jiangxi, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, JingGangShan College, 343009 Ji'an,
Jiangxi, People's Republic of China
Correspondence e-mail: lin.596286@163.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.030$
$w R$ factor $=0.091$
Data-to-parameter ratio $=17.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(4-methoxylbenzoato)phenyl(trimethylsilylmethyl)tin(IV)

The title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Si}\right)\right]$, was prepared by the reaction of $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2}\right] \mathrm{SnPhBr}_{2}$ with $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{5} \mathrm{COOH}$ and spasmolytol in refluxing toluene, and characterized by IR, ${ }^{1} \mathrm{H}$ NMR and elemental analyses. The geometry at the six-coordinate $\mathrm{Sn}^{\mathrm{IV}}$ atom is distorted octahedral with the equatorial plane made up of four O atoms of two carboxylate groups and the axial positions occupied by a phenyl substituent and a trimethylsilylmethyl group.

Comment

There is considerable interest in organotin complexes as a result of their striking antitumour activities and their structural variety (Zhou et al., 2000). It has been shown that the biological activity of diorganotin compounds depends mainly on the alkyl groups and the ligands (Gielen, 1996; Yang et al., 1996; Fang et al., 2001). Trimethylsilylmethyl compounds also show a wide range of biological activities (Xie \& Liu, 1998). To link the biological activities of organotin and organosilicon compounds, the title compound, (I), was synthesized and its crystal structure is reported here.

(I)

The molecular structure of (I) is shown in Fig. 1, while selected geometric parameters are given in Table 1. The geometry at the six-coordinate $\mathrm{Sn}^{\mathrm{IV}}$ atom is distorted octahedral, with a roughly planar equatorial belt made up of atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 4$ and O 5 , and with atoms C 17 of the phenyl ring and C23 of the trimethylsilylmethyl group in the axial positions. The bidentate carboxylate coordination is quite common for organotin complexes (Baul et al., 2004, 2005). The two carboxylate groups act as cis-bidentate chelating agents, giving an equatorial plane around the $\mathrm{Sn}^{\mathrm{IV}}$ atom formed by four asymmetrically coordinated O atoms.

The two chelate four-membered rings are coplanar, the maximum deviation from the least-squares plane through atoms $\mathrm{Sn} 1, \mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 4, \mathrm{O}, \mathrm{C} 1$ and C9 being 0.025 (2) \AA for atom C 1 . In each carboxylate group, the two chelate $\mathrm{Sn}-\mathrm{O}$

Received 5 May 2005 Accepted 13 May 2005 Online 21 May 2005

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
bonds are different; one is much longer then the other. The carboxylate O atoms coordinate strongly to the $\mathrm{Sn}^{\mathrm{IV}}$ atom [$\mathrm{Sn}-\mathrm{O}=2.1021$ (18) A and 2.1109 (18) \AA], while the carbonyl O atoms are much more weakly bound to the $\mathrm{Sn}^{\mathrm{IV}}$ atom $[\mathrm{Sn}-$ $\mathrm{O}=2.5328$ (19) \AA and 2.473 (2) $\AA]$. These values are in excellent agreement with those reported for dibutyltin(IV) complexes by Baul et al. (2004).

The $\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 4$ angle is $83.88(7)^{\circ}$ while the $\mathrm{O} 5-\mathrm{Sn} 1-$ O 2 angle is $164.03(6)^{\circ}$, thereby leaving one side of the Sn atom quite open to combine with the two axial ligands, with a $\mathrm{C} 23-\mathrm{Sn} 1-\mathrm{C} 17$ angle of 136.08 (12).

The two carboxylate ligands are almost coplanar, the dihedral angle between the two benzene planes being 11.4 (2) ${ }^{\circ}$. The dihedral angles between the plane of the axial phenyl ring and the two equatorial benzene rings are 84.60 (11) and 85.79 (10) ${ }^{\circ}$.

No significant hydrogen-bonding interaction is observed in the crystal packing, except for a weak $\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{i}}$ [symmetry code: (i) $-x, \frac{1}{2}+y, \frac{3}{2}-z$] interaction, with a C16 $\cdots{ }^{\text {O }} 1^{\mathrm{i}}$ distance of 3.492 (4) A.

Experimental

$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2}\right] \mathrm{SnPhBr}_{2}(1.77 \mathrm{~g}), p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COOH}(1.22 \mathrm{~g})$ and spasmolytol $(0.81 \mathrm{~g})$ were mixed in toluene $(40 \mathrm{ml})$ and refluxed for several hours. The solvent was then removed, and the residue was recrystallized from toluene (yield 85%, m.p. 410.5 K). Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{SnSi}$ C 53.35 , H 5.17%; found: C 53.67 , H 5.31%. IR (cm^{-1}, group): 1601, 1352 ($\mathrm{C}=\mathrm{O}$ carboxylate form), 1257 $(\mathrm{SiC}-\mathrm{H}), 839,731(\mathrm{Si}-\mathrm{C}), 609,517(\mathrm{Sn}-\mathrm{C}), 445(\mathrm{Sn}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): \delta 0.152\left(s, \mathrm{CH}_{3} \mathrm{Si}\right), 0.997\left(s, \mathrm{SiCH}_{2} \mathrm{Sn}\right), 7.407 \sim 7.770$ $(m, \mathrm{Ph}), 3.898\left(s, \mathrm{OCH}_{3}\right), 6.967$ and $8.157(d, \mathrm{Ar})$.

Crystal data

```
[Sn(C6}\mp@subsup{\textrm{H}}{5}{})(\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{H}}{7}{}\mp@subsup{\textrm{O}}{3}{}\mp@subsup{)}{2}{}(\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{11}{}\textrm{Si})
Mr=585.28
Monoclinic, P2 //c
a=20.1618 (4) \AA
b=11.9426 (3) \AA
c=11.3334 (2) \AA
\beta=92.080 (1) }\mp@subsup{}{}{\circ
V=2727.11 (10) \AA ^
Z=4
```

$D_{x}=1.426 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 6030
reflections
$\theta=2.5-25.2^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=273(2) \mathrm{K}$
Block, colourless
$0.28 \times 0.28 \times 0.27 \mathrm{~mm}$

Data collection

Bruker APEX-II CCD areadetector diffractometer φ and ω scans
Absorption correction: none 26340 measured reflections 5315 independent reflections

$$
4235 \text { reflections with } I>2 \sigma(I)
$$

$R_{\text {int }}=0.041$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-24 \rightarrow 24$
$k=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.091$
$S=1.01$
5315 reflections
312 parameters
$l=-13 \rightarrow 13$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.062 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\text {max }}=0.95 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

C17-Sn1	$2.114(3)$	$\mathrm{O} 2-\mathrm{Sn} 1$	$2.5328(19)$
$\mathrm{C} 23-\mathrm{Sn} 1$	$2.103(3)$	$\mathrm{O} 4-\mathrm{Sn} 1$	$2.1109(18)$
$\mathrm{O} 1-\mathrm{Sn} 1$	$2.1021(18)$	$\mathrm{O} 5-\mathrm{Sn} 1$	$2.473(2)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sn} 1$	$101.19(16)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 5$	$140.36(7)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sn} 1$	$83.27(16)$	$\mathrm{C} 23-\mathrm{Sn} 1-\mathrm{O} 5$	$86.29(10)$
$\mathrm{C} 9-\mathrm{O} 4-\mathrm{Sn} 1$	$99.83(16)$	$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{O} 5$	$56.49(7)$
$\mathrm{C} 9-\mathrm{O}-\mathrm{Sn} 1$	$84.55(16)$	$\mathrm{C} 17-\mathrm{Sn} 1-\mathrm{O} 5$	$88.09(9)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 23$	$109.23(10)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	$55.60(6)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 4$	$83.88(7)$	$\mathrm{C} 23-\mathrm{Sn} 1-\mathrm{O} 2$	$86.07(10)$
$\mathrm{C} 23-\mathrm{Sn} 1-\mathrm{O} 4$	$109.98(10)$	$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{O} 2$	$139.47(7)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 17$	$102.57(10)$	$\mathrm{C} 17-\mathrm{Sn} 1-\mathrm{O} 2$	$87.71(9)$
$\mathrm{C} 23-\mathrm{Sn} 1-\mathrm{C} 17$	$136.08(12)$	$\mathrm{O} 5-\mathrm{Sn} 1-\mathrm{O} 2$	$164.03(6)$
$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{C} 17$	$102.69(9)$		

The H atoms were positioned geometrically and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic), 0.97 (methylene) and $0.96 \AA$ (methyl), and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: $A P E X 2$; program(s) used to refine structure: $A P E X 2$; molecular graphics: $A P E X 2$; software used to prepare material for publication: APEX2.

The authors thank the Natural Science Foundation of Jiangxi Province (grant Nos. 0520064 and 0320026) for financial support.

References

Baul, T. S. B., Rynjah, W., Willem, R., Biesemans, M., Verbruggen, I., Holèapek, M., Vos, D. D. \& Linden A. (2004). J. Organomet. Chem. 689, 4691-4701.
Baul, T. S. B., Singh, K. S., Lyc̀ka, A., Holèapek, M. \& Linden, A. (2005). J. Organomet. Chem. 690, 1581-1587.
Bruker (2004). APEX2. Version 1.22. Bruker AXS Inc., Madison, Wisconsin, USA.
Fang, X.-N., Song, X.-Q. \& Xie Q.-L. (2001). J. Organomet. Chem. 619, 43-48. Gielen, M. (1996). Coord. Chem. Rev. 151, 41-45.
Xie, Q.-L. \& Liu, H. (1998). Chem. J. Chin. Univ. 19, 917-920.
Yang, Z. Q., Song, X. Q. \& Xie, Q. L, (1996). Chin. J. Org. Chem. 16, 111-120.
Zhou, Y.-S, Zhang, L.-J., Zeng, X.-R., Vital, J. J. \& You, X.-Z. (2000). J. Mol. Struct. 553, 25-30.

